大家都知道,激光淬火技術可以對各種導軌、大型齒輪、軸頸、缸內壁、模具、擋板、摩擦車輪、滾輪和滾輪零件進行表面強化。呼倫貝爾耐磨堆焊適用材料為中、高碳鋼、鑄鐵。但是,隨著激光淬火技術的發(fā)展,其技術也逐漸成熟,并開始應用于機床零件。今天介紹了激光淬火技術在機床零件上的應用,主要從以下幾個方面:1.數(shù)控機床電主軸激光淬火技術包括:(1)主軸和隨機附帶4個樣品,樣品直徑80 mm,壁厚20 mm,模具耐磨堆焊技術兩端平整。利用CO2激光進行激光硬化前,分別在主軸和試樣表面覆蓋特殊涂料;增加對激光的吸收。(2)使用5kW的CO2橫流式激光對主軸及試料進行激光淬火,其輸出功率P=18002000W,掃描速度v=5 mm/s,機床旋轉速度n=30r/min,掃描寬度為2-3.5 mm。
通過上述過程處理后的導軌,淬火區(qū)的淬火層的深度為0.58 mm,硬化帶寬為4.47 mm,硬化層組織在細針狀馬氏體部分殘留有奧氏體,呼倫貝爾模具耐磨堆焊技術硬化層組織為殘留在細針狀馬氏體部分的奧氏體。表面硬度為724?797HV0.1,相當于61?64HRC。(3)磨損試驗磨損試驗的結果顯示,在激光掃描淬火圖案為45°的斜線(相對于軌道的邊緣為45°的斜線,參照圖5)、(棱鏡狀)固化區(qū)域為40%的情況下,軌道的耐磨損性高。選項卡頁面中,選擇背景在加工機械離合器連接、花鍵套筒、磁軛和環(huán)的激光淬火技術工作機械離合器連接、模具耐磨堆焊花鍵套筒、磁軛以及環(huán)環(huán)等激光淬火后,其質量明顯優(yōu)于普通鹽浴或感應淬火,解決了連接爪部工作面硬度低、卡爪內側變形大、花鍵套筒側面硬度低、內孔暫時被認可
淬火速度極快,硬化層薄(0.3~0.5mm),熱影響區(qū)小,故淬火畸變微小;因自冷淬火,無淬火冷卻介質的污染。(2)激光淬火適用范圍激光淬火通常是對一些不要求整體淬火,耐磨堆焊技術尺寸精度要求較高,或采用其他方法難以處理,以及形狀復雜或需進一步提高硬度、耐磨性等性能的工件表面硬化處理。(3)激光淬火設備通常包括產(chǎn)生激光束的激光器(CO2激光器、YAG激光器),引導光束傳輸?shù)膶Ч饩劢瓜到y(tǒng)(光閘、模具耐磨堆焊技術可見光同軸瞄準、光束傳輸及轉向、聚焦等裝置),承載工件并使其運動的激光加工機(二維、多維的自動或數(shù)控加工機床等),以及其他輔助裝置(屏蔽裝置、對準裝置等)。
取得了很大的經(jīng)濟效益和社會效果。近年來,在模具、齒輪等零件表面強化方面也得到了越來越廣泛的應用。呼倫貝爾模具耐磨堆焊技術用于激光淬火點質量優(yōu)勢的技術特性的實際應用1。淬火件不變形的激光淬火的熱循環(huán)過程快的中碳鋼較大的型軸類2。幾乎不破壞表面粗糙度,采用防氧化薄涂模鋼。各種模具3激光淬火不穩(wěn)定性精確量的數(shù)控淬火冷作模具鋼模具,刀具4。對局部、溝、溝淬火精確的數(shù)控淬火中碳合金鋼擋板5激光淬火清洗,耐磨堆焊技術高效不需要水和油等冷卻介質的鑄鐵材料發(fā)動機汽缸
激光淬火具有自動控制、柔性加工、零件變形小、淬火后不需要回火等缺點。淬火硬度比常規(guī)方法高約5%?20%,具有低碳環(huán)境等諸多優(yōu)點,這些優(yōu)點使激光淬火加工逐漸受到人們的關注。線按鍵是機械行業(yè)中應用廣泛的零件。為了提高絲扣的承載能力,以及解決大負荷下按鍵與母扣粘在一起的問題,提高絲扣螺釘表面的疲勞強度,需要對其進行表面硬化處理。傳統(tǒng)的硬化處理技術如滲碳、氮化等表面化學處理和誘導表面淬火、火焰表面淬火等方面存在著兩個主要問題:1。熱處理后變形較大,難以得到均勻分布的硬化層,從而影響絲扣的使用壽命;2.對于長棒線按鍵,不能局部處理,處理費用較高。因此,需要新的技術替代,有效地提高了絲綢的使用壽命和處理性價比。
激光淬火、激光焊接原理采用激光燒結齒面,其加熱冷卻速度高,工藝周期短,不需要外部淬火介質。具有工件的變形小、模具耐磨堆焊技術作業(yè)環(huán)境清潔、處理后不需要進行牙齒研磨等精加工、且被處理齒輪的尺寸不限于加熱處理設備的尺寸等獨特優(yōu)點。列表中的“輸入字段”質量好的激光淬火功率密度高,冷卻速度快,不需要水或油等冷卻介質,清潔,快速淬火工藝。與感應淬火、火焰淬火、滲碳淬火工藝相比,呼倫貝爾模具耐磨堆焊激光淬火硬化層均勻,硬度高(一般高于感應淬火高度1-3HRC),工件變形小,加熱層深度和加熱軌跡易控制,自動化容易化,不需要如感應淬火那樣根據(jù)不同的零件尺寸設計對應的感應線圈。